문제
준규가 가지고 있는 동전은 총 N종류이고, 각각의 동전을 매우 많이 가지고 있다.
동전을 적절히 사용해서 그 가치의 합을 K로 만들려고 한다. 이때 필요한 동전 개수의 최솟값을 구하는 프로그램을 작성하시오.
입력
첫째 줄에 N과 K가 주어진다. (1 ≤ N ≤ 10, 1 ≤ K ≤ 100,000,000)
둘째 줄부터 N개의 줄에 동전의 가치 Ai가 오름차순으로 주어진다. (1 ≤ Ai ≤ 1,000,000, A1 = 1, i ≥ 2인 경우에 Ai는 Ai-1의 배수)
출력
첫째 줄에 K원을 만드는데 필요한 동전 개수의 최솟값을 출력한다.
예제 입력 1 복사
10 4200
1
5
10
50
100
500
1000
5000
10000
50000
예제 출력 1 복사
6
풀이
여러 가치의 동전들로 주어진 특정 수를 만들기 위해 필요한 동전의 개수를 구하는 문제이다. 특정 수를 받은 후, 여러 동전 개수 중 가장 비싼 동전부터 차례대로 나누고 몫을 더해준다. 그리고 나머지를 다시 한 단계 낮은 가치의 동전으로 다시 나누어주고 몫을 더한다. 이런식으로 나누어 떨어질 때까지 반복해주면, 특정 수를 만들기 위한 최소 동전 개수를 알 수 있다.
#include <iostream>
#include <vector>
using namespace std;
int main()
{
int n, k;
cin >> n >> k;
vector<int> values(n);
for(int i = 0; i < values.size(); i++)
cin >> values[i];
int cnt =0, re = k;
for(int j = values.size()-1; j >= 0; j--){
if(re == 0) break;
int b = values[j];
if(re / b >= 1){
if(re % b != 0){
cnt += re / b;
re = k % b;
}
else{
cnt += re / b;
re = 0;
}
}
}
cout << cnt;
}